MULTIPLE CHOICE QUESTIONS:

MULTIPLE CHOICE QUESTIONS: (MCQ’s)

1. The points (−1, –2), (1, 0), ( 1, 2), ( 3, 0) forms a quadrilateral of  the type ____
(a) Square
(b) Rectangle
(c) Parallelogram
(d) Rhombus

2. If the distance between the points A(2, 2) and B(1, x) is equal to 5
then the value of x is____

(a) 2
(b) 2
(c) 1
(d) 1

3.The midpoints of a line segment joining two points A(2, 4) and B(2, 4) is____
(a) (2, 4)
(b) (2, 4)
(c) (0, 0)
(d) (2, 4)

4. The distance of point A(x, y) from the origin O (0,0) is given by  OA  =   ___
(a) 2√x² + y²
(b) √x² + y²
(c) √x² − y²
(d) 4√x² + y²

5. The distance between the points P (0, 2) and Q (6, 0) is_____
(a) 4√10
(b) 2√10
(c) √10
(d) 20

6. If O (p/3, 4) is the midpoint of the line segment joining the
points P (6, 5) and Q (2, 3). The value of p is____

(a) 7/2
(b) 12
(c) 4
(d) 4

7. The points which divides the line segment of points P (1, 7) and
Q (4, 3) in the ratio of 2 : 3 is___

(a) (1, 3)
(b) (1, 3)
(c) (1, 3)
(d) (1, 3)

8. The ratio in which the line segment joining the points P(3, 10) and
Q(6, – 8) is divided by O(1, 6) is ____

(a) 1 : 3
(b) 3 : 4
(c) 2 : 7
(d) 2 : 5

9. The coordinates of a point P, where PQ is the diameter of circle
whose centre is O(2, – 3) and Q is (1, 4) is____

(a) (3, −10)
(b) (2, 10)
(c) (3, 10)
(d) (2, −10)

10. Find the coordinates of the point which divides the line segment joining
the points (4,−2)and (7, 4) in the ratio 3:1 internally.

(a) (15/4 , 5/2)
(b) (25/4 , 5/2)
(c) (25/4 , 7/2)
(d) (25/3 , 5/2)

11. If we prove that four sides are equal and the diagonals are also equal then we can say it is a ­­­­___

a) Rhombus   
b) Square   
c) Trapezium   
d) Rectangle

12. The distance between the points A(−6,7) and B(−1,−5) is ___

a) 13 cm 
b) 12 cm   
c) 11 cm  
d) 10 cm

13. The distance between the points P(x,−1) and Q(3, 2) is 5. So the value of x is____

a) 3  
b) −2   
c) −1   
d) 2

14. The point on the y axis which is equidistant from the point M(6, 5) and N(−4, 3) is ___

a) (0, 5)    
b) (0, 3)    
c) (3, 0)    
d) (0,9)

15. The three vertices of a parallelogram taken in order are (−1, 0) (3, 1) and (2, 2) respectively. The co-ordinates of fourth vertex will be ___

a) (−3, 1)   
b) (3, 1)    
c) (−2, 1)   
d) (2,−1)

16. The co-ordinates of the centroid of a triangle whose vertices are (0,6) (8,12) and (8,0) are ____

a) (16/3 , 6)
b) (11/3 , 5)
c)  (2, 11/4)
d) (11/2 , 3/4)

17. The area of the triangle whose vertices are P(3, 2) Q(11, 8) R(8, 12) is___

a) 125 m2   
b) 25 m2    

c) 35 m2    
d) 60 m2

18. Three points will be ___ if the area of the triangle formed by the given points is 0.

a) Collinear   
b) Adjacent  
c) Zero   
d) Equal

19. If D,E,F are the mid points of sides BC, CA and AB respectively of  ΔABC then area of  ΔABC =___

a) 1/3
b) 1/2
c)  1/4      
d) 1/5

20. The area of a triangle formed by (a, b+c) (b, c+a) (c, a+b) is ___

a) 0   
b) (ab, ac)    
c) (a + b + c)  
d) (a + b −c)

21. The distance between the points (0, 5) and (−5, 0) is  ____
(a) 5
(b) 5√2
(c) 2√5
(d) 10

22. The diagonals of a rhombus are ___

a) Perpendicular  
b) Parallel  
c) Adjacent   
d) Similar

23. A line drawn from the vertex to the opposite side which cuts the
opposite side into to equal parts is called a ____

a) Altitude  
b) Ray   
c) Median   
d) Angle

24. In the 4th quadrant for (x , y) we have ___

a) x > 0,  y < 0   
b) x > 0 ,  y > 0  
c) x < 0 ,  y < 0   
d) x < 0 ,  y > 0

25.  AOBC is a rectangle whose three vertices are A(0, 3), O(0, 0) and
B(5, 0). The length of its diagonal is ___

(a) 5
(b) 3
(c) √34
(d) 4

26. The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is _____
(a) 5
(b) 12
(c) 11
(d) 7 + √5

27. If P (α, 4) is the mid-point of the line segment joining the
points Q(−6, 5) and R(−2, 3), then the value of  α  is__

(a) −4
(b) −12
(c) 12
(d) −6

28. If the distance between the points (4, P) and (1, 0) is 5, then the value of P is ___
(a) 4 only
(b) ± 4
(c) −4 only
(d) 0

29. If the points A(1, 2), O(0, 0), C(a, b) are collinear, then____
(a) a = b
(b) a = 2b
(c) 2a = b
(d) a = −b

30. The area of a triangle with vertices (a, b + c), (b, c + a) and (c, a + b) is ____
(a) (a + b + c)²
(b) 0
(c) a + b + c
(d) abc

31. The distance between the points P (a, b) and Q (−a, −b) is_____
(a) (a + b )²
(b) 2 √a² + b²
(c) a + b 
(d) 2 √abc

32. The coordinates of a point A where AB is the diameter of the circle whose centre is (2, −3) and B is (1,4) will be _____
(a) (−3, 10)   
(b) (3, −10)    
(c) (−2, 10)   
(d) (2,−10)

33. The relation between x and y if the points (x, y) (1, 2)and (7, 0) are collinear will be ______
(a) x + 3y −7 = 0
(b) x + 3y −5 = 0
(c) x + 5y −7 = 0
(d) 2x + 3y −7 = 0

34. The distance of the point (3, −4) from the origin will be _____
(a) 5
(b) 3
(c) √3
(d) 4

35. If the line is trisected it means that the line is divided into ____exact parts
(a) One
(b) Two
(c) Three
(d) Four
Answers + Clues:

1: (a)  Use distance formula for each side and if all the four answers should be same.

2: (a) Use distance formula and find value of x

3: (c) Use mid point formula

4: (b) Text book ( distance formula)

5: (b) Use distance formula

6: (b) Use mid point formula

7: (d) Use section formula

8: (c) Use section formula

9: (a) Use mid point formula

10: (b) Use section formula

11:(b) Definition

12:(a) Use distance formula

13:(c) Use distance formula and PQ = 5

14:(d) A point on the y axis is of the form(o,y) and the required point is R(o,y) and RM=RN.

15:(c) Co-ordinates of mid point of AC= co-ordinates of mid point of BD.

16:(a) Co-ordinates of centroid of a triangle whose angles are (a1,b1) (a2,b2) (a3,b3)

17:(a) Use area of triangle formula

18:(a)  Formula

19:(c) Area of triangle formula

20:(a) Use area of triangle formula

21:(b) ⇒  Distance Formula

22:(a) Property of rhombus

23:(c) Definition of median

24:(d) Quadrants property

25: (c) ⇒  Use Distance Formula and find the length of diagonal AB 

26: (b) Use Distance Formula and find the length of each side ,then add the three sides

27: (b) Use Distance Formula and find PQ and PR.Then PQ = PR

28: (b) Use distance formula

29: (c)   If the points are collinear then AO + OC = AC

30: (b) ⇒  Use area of triangle formula

31. (b)  Distance Formula

32. (b)   The centre of the circle bisects the diameter

33. (a)   Points will be collinear if area of ABC = 0

34. (a) ⇒  Use distance formula

35. (c) ⇒  Trisect means divide into 3 equal parts