SAMPLE PAPER OCTOBER 2014

Goa Board Paper        OCTOBER 2014

 1 (A) Select and write the most appropriate alternative from those provided in the bracket :
The H.C. F. and L.C.M of two numbers are 12 and 72 respectively. If one of the numbers is 24, then the other number is ____.

[ 4 ,  36 ,  84 ,  144 ]
Ans : 36

(B) Attempt the following :
(i). Find the sum of the zeros of the quadratic polynomial 3x2 + 2x − 5.

Ans : Sum of the zeros = − \frac{b}{a}  = − \frac{2}{3}

(ii). Determine whether is a zero of the quadratic polynomial x2 − 3.
Ans : Put x2 −3 = 0
x2  = 3
x  = ± \sqrt{3}
\sqrt{3} is a zero of the polynomial

OR
Put x = \sqrt{3} in the given polynomial

Value of the polynomial = ( \sqrt{3})2− 3
= 3 − 3 = 0
\sqrt{3} is a zero of the polynomial

(C) On dividing (2x3 − x2 + 5x − 3) by a polynomial g (x), the quotient and remainder were ( 2x − 1) and  ( 3x − 2 ) respectively. Find g (x).
Ans : Using the formula p(x) = q(x) x g(x) + r(x)
2x3− x2 + 5x − 3 = ( 2x − 1 )  g (x) + ( 3x − 2)
2x3− x2 + 5x − 3 − 3x + 2 = ( 2x − 1 )  g (x)
2x3−x 2 + 2x − 1 = ( 2x − 1 )  g (x)
g (x) = (2x3 − x2 + 2x − 1 )  ÷ (2x − 1)

g (x) = x2  + 1

(D) Assuming that \sqrt{2} is an irrational number, prove that : 8 \sqrt{2} + 5 is an irrational number.
Ans : Let us assume, to the contrary , that 8 \sqrt{2}  + 5 = \frac{a}{b} 
8 \sqrt{2} = \frac{a}{b} − 5
8 \sqrt{2} = a − \frac{5b}{b} 
\sqrt{2} = a − \frac{5b}{8b} 

Now a and b are integers : a − 5b is an integer and 8b is an integer.
a − \frac{5b}{8b} is an rational number
This  gives \sqrt{2} as a rational number
This leads to a contradiction as \sqrt{2} is irrational
Our assumption that 8 \sqrt{2} + 5 is rational, must be wrong.
8 \sqrt{2} + 5 is rational

2 (A) Select and write the most appropriate alternative from those provided in the bracket :
Five cards numbered as 1 , 2 , 3 , 4 , 5 are put in a box and mixed thoroughly. If a card is drawn at random from the box, then the probability that the number on the card is prime is ____.

[ \frac{1}{5} , \frac{2}{5} , \frac{3}{5} , \frac{4}{5}  ]
Ans : \frac{3}{5}

(B) A die is thrown once. What is the probability that the number appearing on the top of the die is :
1. A perfect square?
Ans : All six possible outcomes are 1  , 2  ,  3 , 4  5 and 6
Two favourable outcomes is 1 and 4
Probability that the outcome is a  perfect square is \frac{2}{6}
= \frac{1}{3}

2. A multiple of 3 ?
Ans : There are six possible outcomes
Two favourable outcomes are 3 and 6
The probability that the outcome is a multiple of 3 is \frac{2}{6}  = \frac{1}{3}

(C) Find the roots of ANY ONE of the following :
1. 3x2− 22x − 16 = 0

(By factorization method)
Ans : 3x2 − 22x − 16 = 0
3x2− 24x + 2x − 16 = 0
3x (x − 8 ) + 2 (x − 8 ) = 0
Either  x − 8 = 0   OR  3x + 2 = 0
x = 8   OR   x = −  \frac{2}{3}

2. 2x2 + 13x − 24 = 0
(By quadratic formula )
Ans : 2x2 + 13x − 24 = 0
Here a = 2,   b = 13 , c = − 24
D = b2 − 4ac
= (13)2− 4 × 2   ( − 24)
= 169 + 192
= 361

Roots are given by the formula
= − b ± \frac{ \sqrt{D} }{2a}
= −  13 ± \frac{ \sqrt{361} }{2 × 2}
= −  13  ± \frac{19}{4}
=  − 13 + \frac{19}{4}    and  − 13 − \frac{19}{4}
= \frac{6}{4}    and − \frac{32}{4}
= \frac{3}{2}      and  − 8

(D) Three consecutive positive integers are such that the sum of the square of the smallest number and the product of the other two is 46. Find the integers.
Ans : Let the 3 consecutive positive integers be x ,  x + 1 and  x +2.
From the given condition,

x2 + ( x + 1 ) ( x + 2) = 46
x2 + x2 + x + 2x + 2  − 46 = 0
2x2 + 3x  − 44 = 0
2x2 −  8x + 11x − 44 = 0
2x ( x − 4 ) + 11 (x − 4 ) = 0
( x − 4 ) ( 2x + 11 ) = 0
x − 4 = 0  or  2x + 11 = 0
x = 4     or   x = − \frac{11}{2}

Since x is a positive integer  − \frac{11}{2} is omitted.
x = 4
The 3 consecutive integer are 4 ,5 and 6

3(A) Select and write the most appropriate alternative from those provided in the bracket :
If the digit in the unit’s place of a two digit number is 2x and the digit in the ten’s place is y, then the two digit number is ____.

[ 2xy , 2x +y  , 2x + 10y , 20x + y ]
Ans : 2x + 10y

(B) The following is a pair of linear equations:
− 2x + 3y = 6
4x  − ky  = 8
Answer the following questions with reference to the given pair of equations.
(1) Write the condition for a unique solution.
(2) Find the value of k.
Ans : (i) For a unique solution,

 \frac{a1}{a2}   ≠ \frac{b1}{b2}
\frac{2}{4}  ≠  \frac{3}{− k}
 k ≠ 6

(ii). k has all values except 6

( C) Find the solution of ANY ONE of the following :
1. 7x − 3y = 11 ;  5x − 2y = 8

( By elimination method)
Ans :  7x − 3y = 11                       … (1)

             5x − 2y = 8                        … (2)

Eq. (1) × 2,   14x  − 6y = 22
Eq. (2) × 3,  15x  − 6y = 24
                    −        +        −
                  ______________

Subtracting          − x  = − 2
                                     x = 2

Substituting x = 2  in  eq (2),

We get    5 × 2 −  2y = 8
− 2y = 8 − 10
− 2y = −2
      y = 1
The solution is x = 2 , y = 1

2. 7x − 2y = 3 ;  3x − y = 1
( By substitution method)
Ans :   7x − 2y = 3                                … (1)
             3x −  y   = 1                                … (2)

Eq. (2) gives   y = 3x − 1                       … (3)

Substituting y in eq (1)
7x  − 2 ( 3x − 1 ) = 3
7x  − 6 + 2 − 3 = 0
x − 1 = 0
x = 1
Substituting x = 1 in Eq. (3), we get
y = 3 × 1 − 1
    = 2
Solution is x = 1,  y = 2

(D) A fraction reduces to \frac{1}{5} , if we subtract 1 from the numerator and add 2 to the denominator. It reduces to \frac{3}{3} ,if we only add 3 to the numerator. Find the fraction.
Ans : Let the fraction be \frac{x}{y} where y ≠ 0.
From the given condition,
\frac{( x −1)}{( y + 2)}   = \frac{1}{5}
5 (x − 1 )  = 1 ( y + 2 )
5x − 5 − y − 2 = 0
5x − y = 7                               … (1)

Also x + \frac{3}{y}   = \frac{3}{4}

                4x + 12 = 3y

                      4x − 3y = − 12                         … (2)
Eq (1) × 3,  15 −3y  = 21
                     −      +      −
                     _____________
                       −  11x = − 33
                               x = 3
Substituting x = 3 in Eq. (1),
5 × 3 − y = 7
15 − 7 = y
y = 8
The fraction is \frac{3}{8}

4 (A) Select and write the most  appropriate alternative from those provided in the bracket :

The 20th term of the A.P. : 10 , 8 , 6 ,……. is _____.
[ − 180 , − 28 , 48 ,  580 ]
Ans : − 28

(B) The distribution given below, shows the weights of 30 students of a class:

Weight ( in kg)

(Class – Interval)

Number of students

(Frequency)

40 − 45

7

45 − 50

3

50 − 55

8

55 − 60

6

60 − 65

4

65 − 70

2

Prepare a cumulative frequency table of the less than type. Then taking a suitable scale, draw the ‘Less than type ogive’ on the graph paper provided.
Ans :

Weight

( in kg )

No. of students

( cumulative freq.)

Less than 45

7

Less than 50

10

Less than 55

18

Less than 60

24

Less than 65

28

Less than 70

30

(C) The fourth term of an A.P is 17 and the sum of the third term and the seventh term is 42. Find the first term and the common difference.
Ans : Let the first term be ‘a’ and the common difference be ‘d’.
From the given condition,
a4 = 17
And  a3 + a7  = 42
This gives  a + ( 4 − 1) d = 17
a + 3d = 17                  … (1)
And a + ( 3 −1 ) d + a + ( 7 − 1 ) d = 42
2a + 8d  = 42

Dividing by 2,
We get  a + 4d = 21                      … (2)
               a + 3d  = 17                     … (1)
           −     −        −
              _____________
                    d = 4

Subtituting d = 4 in Eq. (1)
a + 3 × 4 = 17
a = 17 − 12
a = 5
The first term is 5 and the common difference is 4.

(D) A life insurance agent found the following data of the distribution of the ages of 40 policyholders.

Age in years

( C.I )

No. of policy holders

(fi )

Class mark

(xi )

fi xi

18 − 22

3

____

____

22 − 26

12

____

____

26 − 30

14

____

____

30 − 34

6

____

____

34 − 38

3

____

____

38 − 42

2

____

____

Total

∑fi = 40

 

∑fi × xi = _

Rewrite and complete the table and hence find the mean age using the “Direct Method”.
Ans :

Age in years

C.I

 

fi

xi

fixi

18 − 22

3

20

60

22 − 26

12

24

288

26 − 30

14

28

492

30 − 34

6

32

192

34 − 38

3

36

108

38 − 42

2

40

80

Total

∑fi= 40

 

∑fi xi =1120

 

Mean Age = \frac{∑fi × xi}{∑fi}
                   = \frac{1120}{40}

                   = 28 years

5 (A) Select and write the most appropriate alternative from those provided in the bracket :
If the diameter of a circle is 14 cm and the length of the tangent segment drawn from the external point P to the circle is 24 cm, then the distance of the point P from the centre of the circle is ___ cm.

[ 10  , 25   ,  31 ,  38 ]
Ans : 25

(B) In the given figure, two tangents Am and AN are drawn from an external point A to a circle with centre O touching the circle at M and N respectively
Prove that: AM = AN.

(Write only the proof with reasons)
Proof :  Since tangent segments are perpendicular to the radii at the point of contact.
OM⊥ AM at M and ON ⊥ AN at N

In right Δs OMA and ONA
OA = OA                  ( common side )
OM = ON                 ( radii of the same circle )
ΔOMA  ≅ ΔONA    ( RHS congruency )
AM = AN                  ( c.p.c.t )

( C) Draw a circle with centre O and radius 3.8 cm. Take a point A in the exterior of the circle such that OA = 7.5 cm. Using a pair of compass and ruler, construct two tangents from point A to the circle touching it at P and Q respectively. Measure and state the length of the tangent segments.
Ans :

The length of each tangent segment is 6.3 cm

(D) Using a pair of compass and ruler construct ΔPQR with sides PQ = 7 cm, ∠ Q = 60° and QR = 5.5 cm. Then construct Δ P’QR’ whose sides are \frac{4}{5}of the corresponding sides of ΔPQR.
Ans :

ΔP’QR’  is the required triangle whose sides are \frac{4}{5}of the corresponding sides of ΔPQR,

6 (A) Select and write the most appropriate alternative from those provided in the bracket :
If 1 + tan2 3A = sec2 42° where 3A is an acute angle, then the value of A = _____.

[  14°  , 16°  , 42°  , 126° ]
Ans : 14°

(B) Attempt ANY ONE of the following :
1. In ΔPQR, ∠R = 90°.
If cos P = \frac{9}{41} then find:

(a) The length of QR
(b) The value of cot P
(c) The value of sec Q

Ans : (a) cos P = \frac{PR}{PQ}
= \frac{9}{41}

Let PR = 9K and PQ = 41k, where k is a positive number
By Pythagoras theorem

QR2 = PQ2 − PR2
= ( 41k)2− ( 9k)²
= 1681k2−  81k2
= 1600k2

QR = \sqrt{1600k}² 
       = 40k

(b) cot P = \frac{1}{tanP} = \frac{1}{ \frac{QR}{PR} } = \frac{PR}{QR} = \frac{9K}{40K} 
= \frac{9}{40}

(c) sec Q = \frac{1}{cosQ} = \frac{1}{ \frac{QR}{PQ} } = \frac{PQ}{QR} = \frac{41K}{40K}
= \frac{41}{40}

2. Evaluate the following using known values of trigonometric ratios:

Sec 30° × tan 60° − sin2 60° + cot 45°
Ans : Sec 30° tan 60° − sin2 60 + cot 45°

= \frac{2}{ \sqrt{3} } × \sqrt{3} − ( \frac{ \sqrt{3} }{2})²  + 1
= 2 − \frac{3}{4} + 1
= 3 −  \frac{3}{4}
= 12 −  \frac{3}{4}
= \frac{9}{4}
= 2  \frac{1}{4}

(C ) Prove the following identity:
 \frac{sin Ø − 2 sin³ Ø}{2 cos³ Ø − cos Ø} = tan Ø
Ans :
L.H.S. = \frac{sin Ø − 2 sin³ Ø}{2 cos³ Ø − cos Ø}

 
             = \frac{sin Ø [ 1 − 2 sin² Ø] }{ cos Ø [ 2 cos² Ø - 1] } 

             = \frac{ tan Ø [ 1 − 2( 1 - cos² Ø) ]}{2 cos² Ø − 1} 

             = \frac{ tan Ø [ 1 − 2 + 2 cos² Ø ]}{2 cos² Ø − 1} 

             = \frac{ tan Ø [ 2 cos² Ø − 1 ]}{2 cos² Ø − 1} 

             = tan Ø = R.H.S.

(D) Attempt each of the following :
1. Find the distance between the points A ( − 3 , 0) and B ( − 5 , − 4).

Ans : AB2 = [ −3 −( −5)]2  + [ 0 − ( − 4)]2
= ( − 3 + 5)2 + ( 4)2
= (2)2 + 42
= 4 + 16

= 20
AB = \sqrt{20}   =\sqrt{4} × 5 = 2 \sqrt{5} units

2. If P ( 2 , 6 ), Q ( − 4 ,2 ) and R (3 , − 2 ) are the vertices of Δ PQR, then find the area of ΔPQR.
Ans :

Area of ΔPQR

= \frac{1}{2} [  2 (2 + 2) + ( − 4) ( − 2 − 2) + 3 (6 − 2)  ]
= \frac{1}{2} [ 2  × 4 + ( − 4) ( − 4 ) + 3 × 4 ]
= \frac{1}{2} [ 8 + 16 + 12 ]
=\frac{1}{2} ×  36
= 18 square units

7( A) Select and write the most appropriate alternative from those provided in the bracket :
If Δ WIN ∼  ΔFLY, ar( FLY) = 98 sq.cm and \frac{WN}{FY} = \frac{3}{7}, then ar (WIN) = ______ sq .cm.

[ 9 ,  18  ,  42 ,  49 ]
Ans : 18

( B) Given : In ΔPQR, line l is drawn parallel to side QR to intersect side PQ at A and side PR at B respectively. BF ⊥side PQ.
Prove that: \frac{PA}{AQ}  = \frac{PB}{BR}
(Write only the proof with reasons)

 Proof :   Let AE⊥ PB
Area of a triangle = \frac{1}{2} × base × height.

= ar ( PAB ) = \frac{1}{2} × PA × BF

= ar ( QAB ) = \frac{1}{2} × QA × BE

= ar ( PAB ) = \frac{1}{2} × PQ × AE

= ar ( RAB ) = \frac{1}{2} ×RB × AE

= \frac{ar ( PAB)}{ar ( QAB)} = \frac{ \frac{1}{2}× PA ×BF }{ \frac{1}{2} ×QA ×BF} = \frac{PA}{QA}                 … (1)

=\frac{ar ( PAB)}{ar ( RAB)} = \frac{ \frac{1}{2}× PB ×AE }{ \frac{1}{2} ×RB ×AE} = \frac{PB}{RB}                … (2)

Now ΔQAB and ΔRAB are on the same base AB and between the same parallels QR and AD.
Ar( QAB) = ar ( RAB)                        … (3)

From (1), (2) and (3), we get
\frac{PA}{QA}  =\frac{PB}{RB}

\frac{PA}{AQ} =\frac{PB}{BR}

(C) Given : In right triangle, ABC , ∠B = 90°, D is the midpoint of side BC and DE⊥ side AC.
Prove that:
AB2 = AC. (AE − EC )

 Proof:    L.H.S = AB2
= AD2 − BD2    ( Pythagoras theorem to ΔABD)

= (AE2 + DE2 ) − DC2    ( Pythagoras theorem in ΔAED and using BD = DC)
= AE2 + DE2 − ( DE2 + EC2 )   (Pythagoras theorem in Δ DEC )
= AE2 + DE² − DE² − EC2
= AE2 − EC2
= ( AE + EC ) ( AE − EC )

= AC. ( AE − EC)      (AC = AE + EC )
= R. H. S.

(D) A boy on top of a building AB, 12m high observes two parked cars P and Q at angles of depression 30° and 60° respectively. If the two cars and the foot ‘B’ of the building are in the same horizontal line as shown in the figure, find the distance between the two cars.

Ans : To find distance PQ
Let  PQ = x meters and BP = y meters
BQ = ( y − x) meters

Now ∠ AQB = 60° and ∠ APB = 30°

 In right Δ ABQ, tan 60°
= \frac{AB}{BQ}
\sqrt{3} 
\frac{12}{y − x}                                       … (1)

In right ΔABP, tan 30°
=\frac{AB}{BP}
\sqrt{3}  
\frac{12}{y }                                         … (2)

∴  y = 12 \sqrt{3} 

Substituting in  (1), we get
\sqrt{3}  
= \frac{12}{12 \sqrt{3}- x }
\sqrt{3} ( 12 \sqrt{3} −  x ) = 12
36 − x \sqrt{3} = 12
x \sqrt{3}  = 36 − 12
x \sqrt{3}  = 24
x = \frac{24}{ \sqrt{3} }
   = \frac{24}{ \sqrt{3} } × \frac{ \sqrt{3} }{ \sqrt{3} }
= 24 \frac{ \sqrt{3} }{3}
PQ = 8 \sqrt{3} meters
Distance between the cars is 8 \sqrt{3} meters

8 (A) Select and write the most appropriate alternative from those provided in the bracket :
1. If the circumference and the area of a circle are numerically equal, then the radius of the circle is ____ units.

( π  , 2  ,  1  , 2π )
Ans :  2

2. The area of one face of a cube is 49 cm2, then the volume of the cube is ____ cm3.
[ 49  , 7  , 216 , 343 ]
Ans :  343

(B) Attempt each of the following :
1. If O − PQR is a quadrant of a circle with centre O and radius 4cm , then find the length of arc PQR without substituting value of π.

Ans : Length of arc PQR = \frac{Ø}{360 } × 2 π
= \frac{90}{360 } × 2 π × 4 cm
= 2 π cm

2. A vessel is in the form of a hollow cylinder mounted on a hollow hemisphere. The inner diameter of the hemisphere is equal to the height of the cylinder. If the inner diameter of the hemisphere is 6 cm, find the inner curved surface area of the cylinder.
(Do not substitute the value of π)

Ans : Inner curved surface area of the cylinder
= π r2h
= π ×  3 ×  3 × 6 cm2
= 54 π cm2

(c) In the figure given below, AB is the diameter of a semicircle lawn AXB. The shaded region which is a half ring, represents a bed of roses, where points P , Y, Q lie on the outer semicircle. If the width of the ring is 3.5 m and AB = 28 m , then find the area of the shaded region.
( Take π  = \frac{22}{7 } )

Ans : Area of the shaded region = area of outer semicircle – area of inner semicircle                 … (1)

= \frac{1}{2 } ×  π r2
= \frac{1}{2 } × \frac{22}{7 } ×  14 × 14 m2
= 308 m2                                 … (2)

Area  of the outer semicircle
= \frac{1}{2 } × π R2
= \frac{1}{2 } × \frac{22}{7 } ×  17.5 × 17.5 m2
= 481.25 m2                            …. (3)

From (1) (2) and (3), we get

Area of the shaded region
= ( 481.25 − 308 ) m2
= 173.25 m2

(D) A solid metallic sphere of diameter 14 cm is melted and recast into solid right circular cones each of base radius 3.5 cm and height 2 cm respectively. Find the number of cones formed.
( Take π = \frac{22}{7} )
Ans : Let the number of cones formed be N

Volume of the solid metallic sphere
= \frac{4}{3 } π R3
= \frac{4}{3 } × \frac{22}{7} ×  7 × 7 × 7 cm3
= 88 × \frac{49}{3 } cm3                            …. (1)

Volume of each solid right circular cone
= \frac{1}{3 } × π  r2 h
= \frac{1}{3 } ×  \frac{22}{7} ×  3.5 × 3.5 × 2
= 22 × 3.5 × \frac{1} {3} cm2                                …. (2)

Number of cones, N
= \frac{88 × \frac{49}{3} }{22 ×\frac{3.5}{3} } 
= \frac{88 \times 49}{22 \times 3.5} 
= 4 × 7 ×  7 × \frac{10} {35} 
= 56
The number of cones is 56.