EXERCISE 2.3

                                                                          EXERCISE 2.3

1) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder, in each of the following:
(i) p(x) = x3 – 3x2 + 5x −3,     g(x) = x² −2 
(ii) p(x) = x4 – 3x2 + 4x + 5,   g(x) = x2 + 1 −x
(iii) p(x) = x4 – 5x + 6,             g(x) = 2 −x2
Solution:
(i) Here p(x) = x3 −3x2 + 5x – 3 and g(x) = x2 −2
Dividing p(x) by g(x) ⇒
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 1
Quotient = x – 3, Remainder = 7x – 9

(ii) Here p(x) = x4– 3x2 + 4x + 5 and g(x) = x2 + 1 −x
Dividing p(x) by g(x) ⇒
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 2
Quotient = x2 + x – 3, Remainder = 8

(iii) Here   p(x) = x4– 5x + 6 and g(x) = 2−x2
Rearranging g(x) = −x2 + 2
Dividing p(x) by g(x) ⇒
Quotient = −x2 – 2
Remainder = −5x + 10.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 3

2) Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) t2−3,  2t4 + t3 – 2t2 – 9t – 12
(ii) x2 + 3x + 1,  3x4+5x3−7x2 + 2x + 2
(iii) x3 −3x + 1,   x5 – 4x3 + x2 + 3x + l
Solution:
(i) First polynomial = t2 – 3,
Second polynomial = 2t4 + 3t3 – 2t2 – 9t – 12
Dividing second polynomial by first polynomial 
∵ Remainder is zero.
∴ First polynomial is a factor of second polynomial.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 4

 

(ii) First polynomial = x2 + 3x + 1
Second polynomial = 3x4 + 5x3 – 7x2 + 2x + 2
Dividing second polynomial by first polynomial 
∵ Remainder is zero.
∴ First polynomial is a factor of second polynomial.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 5

(iii) First polynomial = x3 – 3x + 1
Second polynomial = x5 – 4x3 + x2 + 3x + 1.
Dividing second polynomial by first polynomial 
∵ Remainder ≠ 0.
∴ First polynomial is not a factor of second polynomial.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 6

 

3) Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are √5/3 and –√5/3
Solution:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 7

4) On dividing x3 – 3x2 + x + 2  by a polynomial g(x), the quotient and remainder
were x – 2 and  −2x + 4, respectively. Find g(x).

Solution:
p(x) = x3 – 3x² + x + 2 ,    g(x) = ?
Quotient = x – 2; Remainder = −2x + 4
On dividing p(x) by g(x), we have
p(x) = g(x) x quotient + remainder
⇒ x3– 3x2 + x + 2 = g(x) (x – 2) + (−2x + 4)
⇒ x– 3x2 + x + 2 + 2 x −4 = g(x) x (x−2)
⇒ x3 – 3x2 + 3x – 2 = g(x) (x – 2)
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials Ex 2.3 8

5) Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) deg p(x) = deg q(x)
(ii) deg q(x) = deg r(x)
(iii) deg r(x) = 0
Solution:
(i) p(x),   g(x),   q(x),   r(x)
deg p(x) = deg q(x)
∴ both g(x) and r(x) are constant terms.
p(x) = 2x2– 2x + 14;    g(x) = 2
q(x) = x2 – x + 7;     r(x) = 0

(ii) deg q(x) = deg r(x)
∴ this is possible when
deg of both q(x) and r(x) should be less than p(x) and g(x).
p(x) = x3+ x2 + x + 1;    g(x) = x2 – 1
q(x) = x + 1,    r(x) = 2x + 2

(iii) deg r(x) is 0.
This is possible when product of q(x) and g(c) form a polynomial whose degree is equal to degree of p(x) and constant term.