MULTIPLE CHOICE QUESTIONS:

MULTIPLE CHOICE QUESTIONS: (MCQ’s)

1.The zeroes of the quadratic polynomial x² + 99x + 127 are _____ .

(a) Both positive
(b) Both negative   
(c) One positive ,one negative   
(d) Both are same

2.If the zeroes of the quadratic polynomial x² +bx+c,  c≠0 are equal then ___

(a) c and a have opposite signs 
(b) c and b have opposite signs  
(c) c and a have same signs               
(d) c and b have same signs

3.The number of polynomials having zeroes as −2 and 5 is ___.

(a) 1   
(b) 2   
(c) 3 
(d) more than 3

4.The degree of the polynomial (x+1) (x²−x−x³ +1 is ____.

(a) 2     
(b) 3   
(c)  4   
(d) 5

5. If the zeroes of the quadratic polynomial x² + (a + 1) x + b   are 2 and −3 then ____.

(a) a= −7 , b= −1   
(b) a = 5 , b = −1
(c)  a = 2 , b = −6   
(d)  a = 0 , b = −6

6. If one of the zeroes of a quadratic polynomial ax² + bx + c is 0,
then the other zero is ____

(a) b/a
(b) 0
(c) b/a
(d) c/a

7. If one of the zeros of the quadratic polynomial (k−1) x² + k + 1 is −3 then k = ___.

(a)  4/3   
(b) −4/3   
(c)  2/3   
(d) −2/3

8.If α  and β are the zeros of x² −4x + 1 then 1/α + 1/β − αβ is ________.

(a)  3   
(b)  5 
(c) −5   
(d) −3

9.If (x + 1) is a factor of x² −3ax + 3a−7 then value of a is ___ .

(a) 1
(b) −1 
(c)  0
d)−2

10. What is the value of  x2 −2x − 4  at (x = −1)

(a) +1     
(b) −1   
(c) +2   
(d) − 2

11. Curves that are either open upwards or open downwards depending
on whether   a>0  or a<0 are called____

(a) Co ordinates     
(b) Equations   
 (c) Graph     
(d) Parabolas

12. A polynomials  p(x) of degree ‘n’ has ___ number of zeros

(a) x     
(b) n     
(c) y     
(d) a

13. The zero of a linear polynomials  ax + b is _____

(a) −b/a   
(b) +b/a   
(c) −b2/a     
(d) +b2/a 

14. The zeros of x2 + 7x + 10 are _____

(a) (x + 2) (x + 5)     
(b) (x + 2) (x − 5)   
(c) (x − 2) (x − 5)   
(d) (x − 2) (x + 5)

15. We know that dividend = divisor x quotient + _____

(a) Last term   
(b) Zero   
(c) First term   
(d) Remainder

16. If p(x) and g(x) are any two polynomials with g(x) ≠ 0 then we can
find polynomials q(x) and r(x) such that p(x) is ____

(a) g (x) x q(x) + r(x)

(b) g (x) x q(x) − r(x)

(c) g (x) + q(x) x r(x)

(d) g (x) − r (x) x q(x)

17. The zeros of 3x + 4 is ___

(a) −3/4
(b) +4/3
(c) −4/3
(d) +3/4

18. The product of the zeros of the quadratic polynomials  6x2 + 5x − 2 is ____.

(a) −1/2
(b) +1/3
(c) −1/3
(d) +1/2

19. If the product of zeros of the polynomials ax2 − 6x − 6 is 4 then value of ‘a’ is ____.

(a) −3/2
(b) + 1/3
(c) −1/3
(d) + 1/2

20. If  ∝ and β are the zeros of the polynomial x + 6x + 5 then the value of  ( ∝ + β  )² is ____

(a)  36
(b)  16
(c)  −36
(d) 25

21. The zeroes of the quadratic polynomial  x²  −5 is ____

(a) ± √5
(b) √5
(c)  −√5
(d)  √3

22. p(x) = 3x + 2 is a polynomial .The variable here is ___

(a) 3
(b) 2 
(c) x
(d) y

23. A polynomial of degree 0 is called a _____polynomial.

(a)  Linear
(b) Quadratic
(c) Constant 
(d) None of these

24. The curve that represents the graph of the polynomial 
f(x) = x² − 2x − 8 is called a _____

(a) Line of symmetry
(b) Co ordinate
(c) Axis
(d) Parabola
25. The polynomial f(x) = x²−6x + 9 has two equal roots .They are ____

(a) √5 ,√5 
(b) 3, 3
(c) √3 ,√3 
(d) 3,−3

26. The maximum number of zeros that a polynomial of degree 4 can have is  ___
(a) One
(b) Two
(c) Three
(d) Four

27. The graph of the polynomial p(x) = 3x – 2 is a straight line which intersects the x-axis at exactly one point namely
_____

(a) (\frac{2}{3} , 0)
(b) (0 , \frac{2}{3} )
(c) (  \frac{2}{3} , 0)
(d) ( \frac{2}{3}\frac{2}{3} )

28. In fig. given below, the number of zeros of the polynomial f(x) is  ____
MCQ Questions for Class 10 Maths Chapter 2 Polynomials with Answers
(a) 1
(b) 2
(c) 3
(d) None

29. The graph of the polynomial ax² + bx + c is an upward parabola if  ____
(a) a > 0
(b) a < 0
(b) a = 0
(d) None

30. The graph of the polynomial ax² + bx + c is a downward parabola if ____
(a) a > 0
(b) a < 0
(c) a = 0
(d) a = 1

31. A polynomial of degree 3 is called  a ____
(a)  Linear polynomial
(b)  Quadratic polynomial
(c)  Cubic polynomial
(d)  Biquadratic polynomial

32. If α, β are the zeros of the polynomial x² – 16, then αβ(α + β) is _____
(a) 0
(b) 4
(c) −4
(d) 16

33. If Α and Β are the zeros of the polynomial ax² + bx + c, then value of ΑΒ is  ____
(a) 0
(b) −c/a
(c) −a/c
(d) 1

34. Zeros of the polynomial x² – 11 are _____
(a) ± √11
(b) ± √3
(c) 0
(d) None

35. If the sum of the zeros of the polynomial f(x) = 2x³ – 3kx² + 4x – 5 is 6, then the value of k is _____
(a) 2
(b) 4
(c) −2
(d) −4

Answers + Clues :

1: (b) Use the formula x =\frac { -b\pm \sqrt { { b }^{ 2 } } −4ac }{ 2a }

2: (c) If co-efficient of { x }^{ 2 } and constant terms have same sign then zeroes are equal

3: (d) Required number of polynomials are infinite

4: (d)  Variables with highest power is the degree (multiply and then write the degree)

5: (d)    Solve the given equation and find the two roots .First root =2 and second root = −3

6:  (a) ⇒  a + 0 = −b/a    a = −b/a

7: (a) Put (x = −3) in the equation = 6k −8 = 0

8: (a) Find the two zeros from the given equation and put these values 

9: (a) If (x + 1) is a factor then x = −1 

10 : (b) Put (−1) in place of x in the given equation and solve it

11 : (d) Definition of parabola

12 : (b) (Textbook)

13 : (a) (Textbook 2.3)

14 : (a) Split the middle term & solve

15 : (d) (textbook 2.4)

16: (a) (Textbook)

17 : (c) Simplify it

18 : (c) Use product of zeros formula

19 : (a) Use product of zeros formula

20 : (a)  Use the sum formula ( ∝ + β ) =−b/a

21 : (a)  Solve the equation x²  −5 = 0 and find value of x 

22 : (c) ⇒  The unknown number.

23 : (c) ⇒  Definition of constant polynomial.

24 : (d) ⇒  Definition of Parabola

25 : (b) ⇒  Solve f(x) = x²−6x +9 and get the roots.

26 : (d) ⇒ Degree = no: of zeros

27 : (c) ⇒  3x−2 = 0 ⇒ x = 3/2 and y = 0

28 : (c) ⇒   Touches the x axis 3 times

29 : (a) ⇒ Definition of parabola

30 : (b) ⇒   Definition of parabola

31 :(c)  ⇒ Definition of cubic polynomial

32 : (a)  ⇒  Solve for sum of roots and product of roots

33 : (b) ⇒  Product of roots formula

34 : (a) ⇒  Solve x² − 11

35 : (b) ⇒  Use sum of zeroes formula