MULTIPLE CHOICE QUESTIONS:

MULTIPLE CHOICE QUESTIONS: (MCQ’s)
1.Which of the following is not a quadratic equation.
(a) x² + 3x – 5 = 0
(b) x² + 4x³ + 2 = 0
(c) 3 + x + x² = 0
(d) x² – 9 = 0

2. A quadratic equation has degree_____
(a) 0
(b) 1
(c) 2
(d) 3

3. The equation (x² + 1)² – x² = 0 has______
(a) Four real roots
(b) Two real roots
(c) No real roots
(d) One real roots  

4. The polynomial equation x (x + 1) + 8 = (x + 2) (x – 2) is:
(a) Linear equation
(b) Quadratic equation
(c) Cubic equation
(d) Bi-quadratic equation

5. If −5 is a root of the quadratic equation 2x² + px – 15 = 0, then:
(a) p = 3
(b) p = 5
(c) p = 7
(d) p = 1

6. Karen solves an equation. After solving she finds the roots as 8 and 2.
The equation she solved was:

(a) x² −10x + 16
(b) x² +10x + 16
(c) x² −10x + 7
(d) 2x² −10x + 16

7. If one root of the quadratic equation 2x² + kx – 6 = 0 is 2, the value of k is:
(a) 1
(b) −1
(c) −2
(d) 2

8. The sum of the roots of the quadratic equation 3x² – 9x + 5 = 0 is:
(a) 3
(b) 6
(c) −3
(d) 2

9. The quadratic equation whose  roots are 6 , 1 is:
(a) x² – 7x + 5 = 0
(b) x² + 7x + 6 = 0
(c) x² – 7x + 6 = 0
(d) x² – 6x + 7 = 0

10. The quadratic equation whose  roots are −6,−1  is:
(a) x² – 7x + 5 = 0
(b) x² + 7x + 6 = 0
(c) x² – 7x + 6 = 0
(d) x² – 6x + 7 = 0

11 Which are the following are quadratic equations
(i)  x² – 6x + 4 = 0                  (ii)  2x² – 6x + 7 = 0
(a) None                                 
(b) Only (i)
(c) Both (i) and (ii)                     
(d) Only (ii)

12.Which of the following is a solution of the quadratic equation
(i)  3x2 –x = 0 for  x =1      (ii) 6x² −5x = 0 for x = −1

(a) none                                 
(b) only (i)
(c) both (i) and (ii)                     
(d)  only (ii)

13. The product of two consecutive positive integers is 24 so the equation will be_____

(a) x2 + x + 24 = 0                               
(b) x2 + x −24 = 0
(c) x2 + 2x − 24 = 0                             
(d) x2 + 2x + 24 = 0

14. The roots of x2 −5x + 6 = 0 will  be _______

(a)−2,−5         
(b) 2, 3         
(c)−2,−3             
 (d) −2,3

15. The zeros of (x−4) (x + 2) = 0 are  ____

(a) 4,−2     
(b) 4,2         
(c)−4, 2           
(d)−4,−2

16. The given equation is 9x2 + 7x  −2 = 0 ... the value of discriminant (D) = ____

(a)  121         
(b)  120             
(c)  141         
(d)  131

17. If D = b2 − 4ac > 0 then the roots  are ____

(a) Unique             
(b) Real       
(c) Do not exist   
(d) Equal

18. If D = b2 −4ac = 0 then the roots are _____

(a) Do not exist                             
(b) Real,not equal
(c) Unique                                     
(d) Real, equal

19. The nature of roots of the quadratic equation 3x2 −4√3x + 4 = 0     are  _____

(a) Real ,unequal                     
(b) Unique
(c) Real, equal                           
(d) Do not exist

20.The sum of the squares of two consecutive numbers is 30.
The equation will be _____

(a) 2x2 + 2x − 29 = 0                                       
(b) 3x2 − 2x + 30 = 0
(c) 3x2 + 2x − 20 = 0                                         
(c) 2x2 −2x + 29 = 0

21.The sum of a number and its reciprocal is 20.
The equation will be _____

(a)  x2−10x + 1 = 0                                               
(b) x2+20x − 1= 0
(c) 2x2  −20x + 1 = 0                                           
(d) x2  −20x + 1 = 0

22. The two digit number whose digits in the tens and units place
be ‘x’ and ‘y’ respectively then the number  will be _____

(a)  10x + y                                 
(b) 10x −y
(c)  10y + x                                 
(d) 10y −x

23. If the equation x2 −ax + 1 = 0 has two distinct roots then _____

 (a) a = 2             
(b) a < 2       
(c)  a > 2     
(d) None of these

  24. If the equation 9x² + 6kx + 4 = 0 has equal roots, then
the roots are both equal to  ____

(a) ± 2/3         
(b) ± 3/2             
(c) 0               
(d) ± 3

25. If ax²+ bx + c = 0 has equal roots, then c = _____

(a) −b/2a         
(b) b/2a           
(c) –b²/4a   
(d)  b²/4a

26. The discriminant of the equation 3x² −2x+ 1/3  is ____

(a)   2
(b)  4   
(c)   0 
(d)  1

27. The discriminant of the quadratic equation 2x² −4x + 3 = 0 is −8 .
So the nature of roots will be ______

(a) No real roots   
(b) Real roots   
(c) Equal roots     
(d) Roots do not exist

28. The roots of the equation 2x² −5x + 3 = 0 is ____

(a)  4 , 3/2             
(b)  2 , 3/4           
(c)  3/3 , 2             
(d) 3/2 , 1

29. Which of the following equations has 2 as a root?
(a) x² – 4x + 5 = 0
(b) x² + 3x – 12 = 0
(c) 2x² – 7x + 6 = 0
(d) 3x² – 6x – 2 = 0

30. Which of the following has the sum of its roots as 3?
(а) 2x² – 3x + 6 = 0
(b) -x² + 3x + 3 = 0
(c) √2x² – 32x + 1 = 0
(d) 3x² – 3x + 3 = 0

31. The sum and the product of the zeroes of a  quadratic equation in x are 3 and 0 .
Then the polynomial is ______           
(a)   2x² − 3x
(b)   3x² − 3x
(c)   x² − 3x
(d)   x² − 9x

32. If α and β are the zeroes of a quadratic equation 2x² − 5x − 7  then  α + β = _____
(a)   5/2
(b)   4/7
(c)   2/7
(d)  5/7

33.  Find the sum of the zeroes of the quadratic equation 2x² − 7x −15

 (a)   5/2
(b)   4/7
(c)   2/7
(d)  7/2
 
34. Find the  zeroes of the quadratic equation x² − 7x
(a)   0 ,3
(b) 0 , 7  
(c)   2 , 7
(d)  3 , 5

35. Find the  zeroes of the quadratic equation   x² − 13x + 36
(a)  6 , 9 
(b)   5 , 7
(c)  4 , 7 
(d)  4 , 9

Answers +   Clues:
1 (b) The quadratic equation should be of the form ax² + bx + c =0

2 (c) The highest power in a quadratic equation is 2

3 (c) Open the brackets solve it full and then conclude

4 (a) ⇒  Solving it we get (x + 12)  

5 (c) Put x = −5 and get value of p

6 (a) The factors are (x−8) (x−2).Then solve it

7 (b) Put x = 2 and solve for k

8 (c) Sum of roots = −b/a

9 (c) The factors are (x−6) (x−1). Then solve it

10 (b) The factors are (x +6) (x+1). Then solve it

11 (c)Definition of Quadratic Equation

12 (a) Put the given values and check

13 (b) Make the equation from the given sum

14 (b) Solve the two equations

15 (a) Solve and find the zeroes

16 (a) Put  D = b² − 4ac and find it

17 (b) Textbook

18 (d) Textbook

19 (c) Find b² −4ac and then say what kind of roots

20 (a) Make the equation from the given statement

21 (d)  Number is x  and the reciprocal is 1/x. Add both and equate it to 20 and solve

22 (a) General form of two digit number

23 (c) Summary

24 (a) Summary

25 (d) If equal roots then b² −4ac = 0  and find value of c

26 (c) Find the value of  b² −4ac

27 (a) (Example 16) Textbook

28 (d) (Example 3) Textbook

29 (c) ⇒  Factorise and find the roots

30 (b) Put sum of roots formula 

 31 (c) ⇒   Put x² + ( α + β) + αβ formula

32 (a) ⇒  Find out the two roots and add them

33 (d) ⇒  Find out the two roots and add them

34 (b)   Factorise and find the roots

35 (d) ⇒  Factorise and find the roots