SAMPLE PAPER MARCH 2013

SAMPLE PAPER GOA BOARD :     MARCH 2013

1(A) Select and write the most appropriate alternative from those provided in the bracket :

The probability of an event that is sure to happen is ____.
[ − 1 , 0  ,  1   , greater than 1 ]
Ans : 1

(B) A bag contains 10 red marbles, 16 green marbles, and 14 white marbles. One marble is drawn at random from the bag. Find the probability of getting :

1.A red marble
Ans : Favourable outcomes = 10 red marbles
Possible outcomes = 10 + 16 + 14 = 20
Probability of getting a red marble
= \frac{10}{40} 
= \frac{1}{4}

2.Anon red marble
Ans : Favourable outcomes = 16 + 14
= 30 non red marbles
Possible outcomes = 40
Probability of getting a non red marble
= \frac{30}{40}
= \frac{3}{4}

(C) Attempt ANY ONE of the following. Find roots of the quadratic equation :

1.  4x2 − 4x −15 = 0
(By factorization Method)
Ans : 4x2 − 4x − 15 = 0

4x2 − 10x + 6x − 15 = 0

2x (2x − 5) + 3 (2x − 5) = 0

 (2x − 5) (2x +3) = 0

Either 2x −5 = 0   or  2x + 3 = 0
x = \frac{5}{2}  OR  x = −  \frac{3}{2}

2. 2x2− 5x − 3 = 0
(By Quadratic Formula Method)
Ans : 2x2− 5x − 3 = 0
Here a = 2 , b = − 5 and c = − 3
D = b2− 4ac
= ( − 5)2− 4  ×  2 ( − 3)
= 25 + 24
= 49

Roots are given as  ( \frac{− b ±\sqrt{D} }{2a}  )
= \frac{− (− 5) ±\sqrt{49} }{2 × 2}
= 5 ± \frac{7}{4} 
Either  5 + \frac{7}{4}  OR   5 −  \frac{7}{4}

\frac{12}{4}  OR − \frac{2}{4}
The roots are  3  OR  − \frac{1}{2}

(D) The area of an exhibition hall is 96 sq. m. If the length and breadth be increased by 1 m each, the area increases by 21 sq. m. Find the length and breadth of the hall.
Ans :  The area of the rectangular hall is 96 sq. cm.
If the length is x meters, then breadth is  \frac{96}{x} meters.
If the length is made (x + 1)m and breadth is made ( \frac{96}{x} + 1) m then new area is

96 + 21 = 117 sq. m

 (x + 1)  [  \frac{96}{(x + 1)} ] = 117

96+ x +\frac{96}{(x + 1)}  = 117

96x + x2 + 96 + x = 117 x

x2 − 20x + 96 = 0

x2 − 12x − 8x  + 96 = 0

x (x − 12)  − 8 (x − 12) = 0

 (x − 8)  (x − 12) = 0

Either x − 8 = 0  OR  x − 12 = 0

Either x = 8   OR  x = 12

As length is bigger than breadth,
The length is 12 m and breadth is 8 m.

2(A) Select and write the most appropriate  alternative from those provided from brackets :

The solution of the equation x + 2y = 4 and 2x −3y = 1 is ___.
[ (x = 1 , y= 2) : (x = 2 , y= 1) : (x = − 1, y = − 2) : (x = 2, y = 1 )
Ans :  (x = 2, y = 1)

(B) The following is a pair of linear equations in two variables :

x + ky − 2 = 0
2x+ 5y  − 3 = 
Answer the following questions with reference to the given pair of equations :
1. Write down the conditions for no solution.
Ans : \frac{1}{2}  = \frac{k}{− 5}  ≠ \frac{− 2}{− 3} 

2. Find the value of k.
Ans : \frac{1}{2}  = \frac{k}{− 5}
k = \frac{− 5}{2}

(C) Find the solutions of ANY ONE of the following pairs of linear equations by the method specified in the bracket :
1. 4x + 3y = 17   and   5x − 2y = 4

(By eliminating method)
Ans : 4x + 3y = 17                … (1)

            5x − 2y = 4                 … (2)

Multiply  Eq. (1) by 2, we get            8x + 6y =  34

Multiply  Eq. (2) by  3, we get          15x − 6y = 12

                                                            ____________

                                             Adding      23x    = 46

 x = \frac{46}{23} = 2

Substituting x = 2 in eq (1),

We get  4 × 2 + 3y = 17
3y = 17 − 8
3y = 9
y = \frac{9}{3}  = 3
The solution is x = 2 ,  y = 3.

2. 6x+ 5y = 8   and   9x − 2y = 31
(By substitution method)
Ans : 6x  + 5y = 8       … (1)

9x − 2y = 31

9x – 31 = 2y

 y =  9x −  \frac{31}{2}        … (2)
Substituting the value of y in Eq (1)

6x + 5 (9x – \frac{31}{2} ) = 8

12x + 5 (9x – 31) = 16

12x  + 45x −  155 − 16 = 0

57x  − 171 = 0

x = \frac{171}{57}
= 3
Substituting x = 3  in  Eq (1)

6 × 3 + 5y = 8

5y = 8 − 18

y = − \frac{10}{5}
=  − 2
The solution is x = 3,    y = − 2

(D) Notebooks were equally distributed to the students in std 6th. If there were 20 students more each would have received 2 books less and if there were 20 students less each would have received 3 books more. Find the number of students in the class and the number of books received by each student.
Ans : Let the number of students in the class be x
And the number of notebooks received by each student be y.
Total number of notebooks distributed is xy,
By the given condition, the two-equation are,
( x + 20) ( y − 2) = xy                    … (1)
(x − 20) ( y + 3)  = xy                    … (2)

Eq. (1) xy − 2x + 20y − 40 = xy

− 2x + 20y = 40
      x − 10y = − 20                                 ..  (3)

Eq. (2)  xy + 3x − 20y − 60 = xy 

                              3x − 20y = 60          … (4)
3 × eq (3) gives 3x − 30y = − 60       …  (5)
                            −    +             +
                                  ______________
                                      10y = 120
  y = \frac{120}{10}
     = 12

Substituting y = 12  in  Eq (3),

x − 10 × 12 = − 20
x =  − 20 + 0
x = 100
No. of students is 100 and each student received 12 notebooks.

3(A) Select and write the most appropriate alternative from those provided in the brackets :

The product of two numbers is 168 and their H.C.F is 7  then their L.C.M is ____.
[   14  ,  24   ,  46   , 1 176 )
Ans : 24

(B) Divide the polynomial x3 − 5x2 + 3x − 3  by   x2 −2 , and find the quotient and the remainder.
Ans :

Quotient = x  − 5
Remainder = 5x − 13

(C) If two zeros of the polynomial x4 −13x−33x2 + 39x + 90 are \sqrt{3}  and  − \sqrt{3} find the other zeros of the polynomial.
Ans : Since  \sqrt{3} and − \sqrt{3}  are the two zeros,

 (x − \sqrt{3} ) (x + \sqrt{3}  ) = x2 −3 is a factor of the polynomial

Let us divide the given polynomial by x2 −3

Factorising x2 − 13x − 30  we get
= (x + 2)  (x − 15)
The other zeros are given by x + 2 = 0 and x − 15 = 0
x =  − 2  and x = 5
The required other two zeros are  − 2 and 15.

(D) Prove that \sqrt{5}  is an irrational number.
Proof:  Let us assume, to the contrary, that \sqrt{5}  is rational.
We can find integers a and b () such that  = a/b where a and b are coprime

 b \sqrt{5} = a

 5b2  = a2                             … (1)

a2  is divisible by 5
a is divisible by 5                              … (2)
a = 5c, for some integer c               …. (3)

Substitute (3) in (1), we get
5b2 = 25c2
 b2  = 5c2
b2  = 3c2

b2 is divisible by 5.
b is divisible by 5                             … (3)
From (2) and (4), a and b are both divisible by 5.
This contradicts our assumption that a and b are coprime.
\sqrt{5} is rational is a wrong assumption.
\sqrt{5} must be irrational.

4(A) Select and write the most appropriate alternative from those provided in the bracket :

The 4th term of an A.P whose first term is 21 and the common difference is − 3 is ____.
[ 12  ,  33  ,  9  ,  − 9 )
Ans :   12

(B) The following table gives the literacy rate (in percentage) of 35 cities :

Literacy rate (in %)

Number of cities

45 − 55

5

55 − 65

8

65 − 75

13

75 − 85

6

85 − 95

3

Find the mode of this data.
Ans :  The maximum class frequency is 13.
The modal class is 65 − 75

Where l  = lower limit of the modal class = 65
h = class size = 10
f1 = frequency of the modal class = 13
f0= frequency of the class preceding the modal class = 8
f2 = frequency of the class succeeding the modal class = 6

Mode = l + \frac{ f_{1}- f_{0} }{2 f_{1} - f_{0} - f_{2} }  × h

= 65 + ( \frac{13 - 8 }{2 ×  13 - 8 - 6}  )  ×  10

= 65 + \frac{5}{12}  ×  10

= 65 + \frac{25}{6}

= 65 + 4.167

= 69.167
Mode of this data is 69.167

(C) The second and seventh terms of an Arithmetic progression are 2 and 22 respectively. Find the sum of the first 30 terms.
Ans : The nth term is given by, an = a + (n − 1) d
a + ( 2 − 1) d = 2                             … (1)
and a + (7 − 1) d = 22                   …. (2)

From (1)   a + d = 2
From (2)  a + 6d = 22
     Subtracting (2) from (1) we get
                    − 5d  = − 20
                          d = 4

From  (1)  a + (2 − 1)  4 = 2
a =  2 − 4
a = − 2

Sum of n terms, Sn = \frac{n}{2} [ 2 a + (n − 1 ) d ]
S30\frac{30}{2}  [ 2 ×  ( −  2) + (30 − 1) × 4

= 15 ( −  4 + 116 )
= 15 ×  112
= 1680
Sum of first 30 terms is 1680.

(D) The table below shows the number of wickets taken by a group of 35 bowlers in a one-day cricket match.

Number of Wickets (CI)
Number of Bowlers (fi)
Class Marks (xi)
Deviation di = xi-a
fidi
15-25
5
___
___
___
25-35
6
___
___
___
35-45
10
___
___
___
45-55
6
___
___
___
55-65
5
___
___
___
65-75
3
___
___
___
Total
∑fi = 35
 
 
∑fidi= __

Taking the class-mark (denoted by ‘a’) of the class interval 35 − 45 as the ‘assumed mean’, rewrite and complete the table, and also find the mean of the data.
Ans :

C. I.

fi

xi

Di= xi−40

fidi

15  − 25

5

20

− 20

− 100

25 − 35

6

30

− 10

− 60

35 − 45

10

40

0

0

45 − 55

6

50

10

60

55 − 65

5

60

20

100

65 − 75

3

70

30

90

Total

∑fi = 35

 

 

∑fidi= 90

Assumed mean,     a = 40

Mean,   x = a + \frac{∑fidi }{∑fi }
= 40 + \frac{90}{35}
= 40 + \frac{18}{7}
= 40 + 2.57
= 42.57

5(A) Select and write the most appropriate alternative from those provided in the brackets :

ΔDEF ∼  ΔXYZ  and  if

\frac{ar (Δ DEF)}{ar (Δ XYZ)}  = \frac{25}{64}   then \frac{EF}{YZ} = ____.
[ \frac{25}{64}   , \frac{8}{5}   , \frac{ \sqrt{5} }{ \sqrt{8} }  ,  \frac{5}{8} ]
Ans :  \frac{5}{8}

(B) With reference to the given figure and the given conditions write only the proof with reasons of the following theorem.

Given: In ΔPQR, ∠PQR = 90° QS _|_ PR, where S lies on PR.
Prove that: PR2 = PQ² + QR2
Proof :

In ΔPSQ and ΔPQR
∠P = ∠P                          (common side)
∠PSQ = ∠PQR              (each is a right angle)
ΔPSQ ∼  ΔPQR             (AA similarity criterion)

 = \frac{ PQ}{RS} = \frac{PS}{PQ}

 PQ2 = PS × PR                            … (1)

Similarly we can prove that ΔQSR ∼ ΔPQR

 = \frac{ QR}{PR} = \frac{SR}{PR}

 QR2 = SR × PR                            … (2)

Adding (1) and (2)

PQ2 + QR2 = PS × PR × SR × PR
                     = PR (PS + SR)
                     = PR  PR
                     = PR2

PR2 = PQ2 + QR2

(C) The perpendicular from K to side MN of ΔKMN intersects MN at R such that 3MR = RN.
Prove that: 2KN2 = 2KM2 + MN2

Proof
:

MN = MR + RN
        = MR +3MR      (using given condition)
        = 4MR

 MR = \frac{1}{4} MN and RN = \frac{3}{4} MR          … (1)
Now in right ΔKRN, by Pythagoras theorem,
KN2 = KR2 RN2
         = (KM2 – MR2) + RN2                        (using right DKRM)

         = KM2\frac{1}{16}  MN2 + \frac{9}{16} MN2         [using (1)]
         = KM2 + \frac{8}{16} MN2

KN2 = KM2 + \frac{1}{2} MN2

Multiplying by 2,  we get

2KN2 = 2KM2 + MN2

(D) As observed from the top of a 75 m high lighthouse from the sea level, the angles of depression of two ships are 30° and 60°. If one ship is exactly behind the other on the same side of the lighthouse find the distance between the ships.

Ans :  Let BD = x   and   BC = y

DC = y − x                                       …(1)

In right ΔABD,  tan 60° = \frac{AB}{BD}
\sqrt{3} = \frac{75}{x}
x =  \frac{75}{ \sqrt{3} }                … (2)

In right Δ ABC, tan 30° = \frac{AB}{BC}

\frac{1}{ \sqrt{3} }  = \frac{75}{y}

 y = \frac{75}{ \sqrt{3} }                         … (3)

From (1) (2) and (3)

DC = y − x = \frac{75}{ \sqrt{3} } / \sqrt{3} 
= 75  ( \frac{ \sqrt{3} - 1 } { \sqrt{3} }  )
= 75 (  \frac{ 3 - 1 } { \sqrt{3} } )
= \frac{150}{ \sqrt{3} } ×  \frac{ \sqrt{3} }{ \sqrt{3} }
=   \frac{150 } { \sqrt{3} }
= 50 \sqrt{3} 
Distance between the two ships is 50  meters.

6(A) Select and write the most appropriate alternative from those provided in the bracket :

If PA and PB are two tangent segments to a circle with centre O such that ∠APB = 62° then ∠AOB = _____.
[ 62° ,  31°  , 180°  ,  118° ]
Ans : 118°

(B) In the figure below ‘G’ is a point in the exterior of the circle with centre O. And GH and GF are two tangents to the circle at H and F respectively.
Prove that: GH = GF

(Write only the proof with reasons).
Proof : Since GH and GF are tangents to the circle at H and F,
They are perpendicular to the radii OH and OF respectively.
ΔGHO and ΔGFO are right triangles, where
OH = OF                       (radii of the same circle)
OG = OG                       (common hypotenuse)
ΔGHO ≅  ΔGFO          (RHS congruency)
GH = GF                       (cpct)

(C) Draw a circle with centre O and radius 2.5 cm. Then take a point R at a distance of 6.7 cm from the centre of the circle. Using a pair of compass and ruler construct two tangents RB and RC to the circle. Measure and state the length of the tangent segments.
Ans : 

Length of each tangent segment is 6.2 cm.

(D) Using a pair of compass and ruler construct ΔDEF with side EF = 4.5 cm, DE = 5cm, ∠E = 60°. Then construct ΔD’EF’ whose sides are \frac{4}{5} of the corresponding sides of ΔDEF.
Ans : 

7(A) Select and write the most appropriate alternative from those provided in the bracket :
The numerical value of the trigonometric ratio tan 30° = ____.

\sqrt{3}  ,    1  ,  \frac{1}{ \sqrt{3} }    ,  not defined )
Ans :  \frac{1}{ \sqrt{3} }

(B) Attempt ANY ONE of the following :
1. In  ΔPNR, ∠N = 90°. If tan R = \frac{40}{9} , then find:

(a) the length of PR
(b) the value of sin P
(c) the value of cot R.

Ans : tan R = \frac{40}{9}

(a) By Pythagoras theorem

PR2 = PN2 + NR2
        =402 + 92 

        = 1600 + 81
        = 1681

PR = \sqrt{1681}
       =41


(b) sin P = \frac{opp \thinspace \thinspace  side \thinspace \thinspace to \thinspace \thinspace ∠P }{hypotenuse}
= \frac{9 }{41}

(c) cot R = \frac{adj \thinspace \thinspace side \thinspace \thinspace \thinspace to \thinspace \thinspace ∠R }{opp \thinspace \thinspace side \thinspace \thinspace  to \thinspace \thinspace  ∠R}
= \frac{9 }{40}

2. Evaluate the following expression by using known numerical values of trigonometrical ratios.

5 cos2 60 + 4 sec2 30  −  3 tan2 30
Ans :    5 cos2 60 + 4 sec2 30 −  3 tan2 30
= 5 × \big( \frac{1}{2} \big)²  + 4 × \big( \frac{2}{ \sqrt{3} } \big)²  − 3 × \big( \frac{1}{ \sqrt{3} } \big)²

= \frac{5}{4}  + \frac{16}{3} − 1
= 15 + 64 − \frac{12}{12}
= \frac{67}{12}
= 5  \frac{7}{12}

(C) With the help of a suitable figure prove that
Sin2 B + cos2 B =1
Ans : 

In right Δ ABC, ∠C = 90°.

By Pythagoras theorem

 AC2 + BC2 = AB2
Dividing by AB2,

\frac{AC²}{AB²} + \frac{BC²}{AB²} = \frac{AB²}{AB²}
\big( \frac{AC}{AB} \big)² + \big( \frac{BC}{AB} \big)² = 1
But \frac{AC}{AB} = sin B and  \frac{BC}{AB} = cos B
( sin B)² + ( cos B)² = 1
sin² B + cos² B = 1

(D) Attempt each of the following :
1. Find the distance between the points A ( 2, − 3) and B ( 5, 6).

Ans : By distance formula,
AB = \sqrt{( 2 − 5)² + ( − 3 − 6)²}
       = \sqrt{9 + 81}
       = \sqrt{90}
       = 3 \sqrt{10}

2. Find the value of k if the points A( 2, 3) , B ( 4,  k) C ( 6, 3) are collinear.
Ans : Since the points are collinear, then the area of ΔABC = 0

\frac{1}{2}  [ (2 (k – 3) + 4 ( 3 − 3 ) + 6 (3 − k) ] = 0
2k  − 6 + 18 − 6k = 0
− 4k + 12 = 0
− 4k = − 12
k = 3

8 (A) Select and write the most appropriate alternative from those provided in the bracket :
1. In a circle of radius 21 cm, an arc of length 22 cm subtends an angle at the centre. If π  = \frac{27}{7} , then  ∅ = ___°.

[  30  , 60   ,  90  ,   120  )
Ans :   60

2. Two cubes each of side 3 cm are joined end to end. The surface area of the resulting cuboid is ______cm2.
[  18  ,  27  ,  45  ,  90)
Ans : 90

(B) Attempt each of the following :
1. A sector of 36° is cut out from a circle of radius 6 cm. find the area of the circle without substituting the value of π.

Ans : Area of sector O − PXB = \frac{∅}{360} × π r2
= \frac{36}{360}  ×  π ×  62
= \frac{1}{10}  × π × 36

= 18 \frac{π}{5} cm2

2. The area of the base of a cylindrical tank is 2 cm2 and the height is 1.5 m. find the capacity of the cylindrical tank without substituting the value of π.
Ans : Volume of cylindrical tank
π r2 = 2 × 1.5
(Area of base  height) = 3 m³
The capacity of the tank is 3 m³

(C) In the following figure two concentric circles are shown. The radius of the inner circle is 21 cm and the area of the shaded region is 1078 sq.cm, then find:
(take π = \frac{22}{7} )


1. Area of inner circle.

Ans :Area of the inner circle = π r2
= \frac{22}{7} ×  21  × 21

= 1386 cm2

2. Area of outer circle.
Ans : Area of the outer circle
= area of shaded portion + area of the inner circle
= (1078 + 1386) cm2
= 2464 cm2

(D) A solid metallic sphere of diameter 30 cm is melted and recast into smaller cones each of radius 7.5 cm and perpendicular height 3 cm. find the number of cones formed.
Ans :  Number of cones formed

= \frac{Volume of the solid sphere}{ Volume of each cone}
= \frac{4}{3}  × π × R³ /  \frac{1}{3}  π r²h
=\frac{4 × 15 × 15 × 15 × 15 }{7.5 × 7.5 × 3 } 

(as R = \frac{30}{2} cm)
= \frac{4 × 10 × 10 × 15 × 15 × 15}{75 × 75 × 3}
= 80