Introduction to Trignometry 8

Trigonometric Ratios and Angles

* Trigonometry is the study of relationship between the angles and sides of triangles.
* The ratios between the lengths of the sides of a right-angled triangle are relation with its acute angles is called trigonometric ratios.
N a right-angled triangle ABC, if ∠A is an acute angle:
* Sin ∠A = \frac{side \thinspace \thinspace opposite \thinspace to \thinspace ∠A}{hypotenuse}

* Cos ∠A = \frac{side \thinspace \thinspace adjecent \thinspace to \thinspace ∠A}{hypotenuse}

* Tan ∠A = \frac{side \thinspace \thinspace opposite \thinspace to \thinspace ∠A}{side \thinspace \thinspace adjacent \thinspace to \thinspace ∠A}
* Cosec ∠A = \frac{1}{sin \thinspace \thinspace ∠A}  = \frac{hypotenus}{side \thinspace \thinspace opposite \thinspace to \thinspace ∠A}

* Sec ∠A = \frac{1}{cos \thinspace \thinspace ∠A} = \frac{hypotenus}{side \thinspace \thinspace adjacent\thinspace to \thinspace ∠A}

* Cot ∠A = \frac{1}{tan \thinspace \thinspace ∠A} = \frac{side \thinspace \thinspace adjacent\thinspace to \thinspace ∠A}{side \thinspace \thinspace opposite \thinspace to \thinspace ∠A}

If we know the value of any one of the trigonometric ratios of an acute angle in a right-angled triangle, we can calculate other trigonometric ratios of the angle.

Trigonometric Ratios of Special Angles

 

Ratios
30°
45°
60°
90°
Sine (sin)
0
\frac{1}{2}
\frac{1}{ \sqrt{2} }
\frac{ \sqrt{3} }{ 2 }
1
Cosine ( cos)
1
\frac{ \sqrt{3} }{ 2 }
\frac{1}{ \sqrt{2} }
\frac{1}{2}
0
Tangent (tan)
0
\frac{1}{ \sqrt{3} }
1
\sqrt{3}
un defined
cosecant ( cosec)
un defined
2
\sqrt{2}
\frac{2}{ \sqrt{3} }
1
secant (sec)
1
\frac{2}{ \sqrt{3} }
\sqrt{2}
2
un defined
Cotangent ( cot)
un defined
\sqrt{3}
1
\frac{1}{ \sqrt{3} }
0

 

Trigonometric Ratios Of Complementary Angles
    Sin ( 90° – A )  = cos A
     Cos ( 90° – A ) = sin A
     Tan ( 90° – A )  = cot A
Cosec ( 90° – A )   = sec A
       Sec   ( 90° – A )  = cosec A
    Cot  ( 90° – A)  = tan A

Trigonometric Identities

An equation that is true for all values of the quantities that it contains is called as identity.
Trigonometric Identities:
* Sin²θ +cos² θ = 1 where 0° ≤ θ ≤ 90°
* 1+ cot²θ = cosec²θ where 0° < θ ≤ 90°
* 1+ tan²θ = sec²θ where 0° ≤ θ< 90°

Leave a Comment